Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
نویسندگان
چکیده
High voltage spinel LiNi(0.5)Mn(1.5)O(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi(0.5)Mn(1.5)O(4) spinels with different disordered phase and/or Mn(3+) contents have been synthesized. It is revealed that during the slow cooling process (<3 °C min(-1)), oxygen deficiency is reduced by the oxygen intake, thus the residual Mn(3+) amount is also decreased in the spinel due to charge neutrality. In situ X-ray diffraction (XRD) demonstrates that the existence of a disordered phase fundamentally changes the spinel phase transition pathways during the electrochemical charge-discharge process. The presence of an appropriate amount of oxygen deficiency and/or Mn(3+) is critical to accelerate the Li(+) ion transport within the crystalline structure, which is beneficial to enhance the electrochemical performance of LiNi(0.5)Mn(1.5)O(4). LiNi(0.5)Mn(1.5)O(4) with an appropriate amount of disordered phase offers high rate capability (96 mAh g(-1) at 10 °C) and excellent cycling performance with 94.8% capacity retention after 300 cycles. The fundamental findings in this work can be widely applied to guide the synthesis of other mixed oxides or spinels as high performance electrode materials for lithium ion batteries.
منابع مشابه
THE CARRIER FACILITATED TRANSPORT OF THE LITHIUM IONS BY A SERIES OF NON-CYCLIC SYNTHETIC IONOPHORES
The carrier facilitated transport of lithium picrate was studied using a series of non-cyclic polyethers containing different end groups and chain lengths through Bulk Liquid Membrane (BLM) and Supported Liquid Membrane (SLM) systems. The various membrane supports used are viz. PTFE, cellulose nitrate, and dialysis membrane and onion membrane. The amount of Li+ transported depends upon the stru...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSpinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries
DOI: 10.1002/aenm.201600922 considering the overpotential during charge process. Recently, Yamada et al. reported that LiNi0.5Mn1.5O4 can only reversibly provide capacity of ≈75 mA h g−1 in the more concentrated hydrate melt electrolytes (≈30 mol kg−1), which is 50% of theoretical capacity.[14] The oxygen evolution side reaction also largely significantly reduce the coulombic efficiency. In add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 39 شماره
صفحات -
تاریخ انتشار 2012